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1 Introduction 

We present a new method for simplifying large data sets 
that contain material interfaces. Material interfaces embed- 
ded in the meshes of computational data sets are often a 
source of error for simplification algorithms because they 
represent discontinuities in the scalar or vector fields over 
a cell. By representing material interfaces explicitly in a 
data simplification process, we are able to provide separate 
field representations for each material over a single cell and, 
thus, to represent the fields much more accurately. Our al- 
gorithm uses a multiresolution tetrahedral mesh supporting 
fast coarsening and refinement capabilities and error bounds 
for feature preservation. We represent a material interface 
or other surface of discontinuity as the zero set of a signed 
distance function. This representation makes it possible to 
maintain continuity of the surface across cell boundaries. It 
also makes it possible to represent more complex interface 
structures within a cell, such as T-intersections. Within a 
cell, a field is represented on either side of the surface of 
discontinuity by separate linear functions. These functions 
are determined by true and “ghost” values of the field at  the 
vertices of the cell. By requiring that each vertex have only 
one ghost value for a given field and material, we are able 
to avoid introducing spurious discontinuities in the fields at 
cell boundaries. The use of linear functions determined by 
ghost values makes it unnecessary to divide the original cells 
in the mesh along the surface of discontinuity, avoiding the 
resultant introduction of complex cell types and field rep- 
resentations. It also decouples the field representation from 
the representation of the surface of discontinuity, making it 
easier to represent fields when the material interfaces are 
more complex. Both the signed distance function that de- 
fines the surface of discontinuity and the ghost values that 
determine the field representations are handled very simply 
during refinement and coarsening of the mesh ensuring that 
all spurious discontinuities can be avoided with a minimum 
of computation and programming effort. We have applied 
our algorithm to simplification of a test problem from a well 
known fluid dynamics code with excellent results. Graphi- 
cal and numerical results are presented. Furthermore, our 
multiresolution representation can be applied to other kinds 
of surfaces, e.g. isosurfaces. 

2 Multiresolution Tetrahedral Mesh 

As the geometric basis for our simplification algorithm we 
use the subdivision of a tetrahedral mesh presented by Zhou 
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et al [l]. This framework has an important advantage 
over other multiresolution spatial data structures such as an 
octree-it makes it easy to avoid introducing spurious dis- 
continuities into our representations of fields. The way we 
perform the binary subdivision ensures that the tetrahedral 
mesh will always be a conformant, i.e, all edges in the mesh 
end at the endpoints of other edges and not in the interior 
of edges. The simplest representation for a field within a 
tetrahedral cell is just the unique linear function that inter- 
polates field values specified at the cell’s vertices. In the case 
of a conformant mesh, this natural field representation will 
be continuous across cell boundaries, resulting in a globally 
C’ representation. 

We have generalized the implementation presented by 
Zhou et al by removing the restriction that the input data 
needs to be given on a regular rectilinear mesh consisting 
of (ZN + 1) x (zN + 1) x (2N + 1) points. A variety of 
input meshes can be supported by interpolating field val- 
ues to the vertices of the multiresolution tetrahedral mesh. 
In general, any reasonable interpolation procedure may be 
used. In some cases, the procedure may be deduced from 
the physics models underlying the simulation that produced 
the data set. In other cases, a general-purpose interpolation 
algorithm will be appropriate. 

We construct our data structure as a binary tree in a t o p  
down fashion. Data from the input data set, including grid 
points and interface polygons, are assigned to child cells at 
the time that their parent is split. 

The other basis for our algorithms is the ROAM system, 
described in [2]. ROAM uses priority queue-driven split and 
merge operations to provide optimal real-time display of tri- 
angle meshes for terrain rendering applications. The tetrahe- 
dral mesh structure used in our framework can be regarded 
as an extension to tetrahedral meshes of the original ROAM 
data structure for triangle meshes. 

Since our data structure is defined recursively as a binary 
tree, a representation of the original data can be computed 
in a preprocessing step, and we can utilize the methods de- 
veloped in ROAM to efficiently select a representation that 
satisfies an error bound or a desired cell count. This makes 
the framework ideal for interactive display. 

Strict Lm error bounds are incorporated into the subdi- 
vision process, see Section 5 below. 

3 Representing Material Interfaces 

In the class of input datasets with which we are working, 
material interfaces are represented as triangle meshes. In 
the case that these triangle meshes are not known, they are 
extracted from volume fraction data by a material inter- 
face reconstruction technique described in [3] and [4] (The 
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Figure 1: True and approximated interfaces. 
Figure 2 Ghost values. 

volume fractions resulting from numerical simulations indi- 
cate what percentages of which materials are present in each 
cell.). Such an interface reconstruction technique produces 
a set of crack-free triangle meshes and normal vector infor- 
mation that can be used to determine on which side and in 
which material a point in space lies. 

Within one of our tetrahedra, an approximate material 
interface is represented as the zero set of a signed distance 
function. Each vertex of a tetrahedron is assigned a signed 
distance value for each of the material interfaces in the tetra- 
hedron. This value is simply the minimum distance from the 
vertex to the interface. The sign of the distance is given by 
the side of the interface on which the vertex lies. 

Figure 1 shows a twedimensional example of two triangles 
forming a conformant mesh, crossed by an interface (shown 
in red). The minimum distances from the vertices of the 
triangles to the interface are shown as dotted lines. The dis- 
tances for vertices on one side of the interface (say, above the 
interface) are assigned positive values and those on the other 
side are assigned negative values. These signed distance val- 
ues at the vertices will then determine linear functions in 
each of the triangles and the approximated interface (shown 
in blue) will be the zero set of these h e a r  functions. Be- 
cause the mesh is conformant, the linear functions in the 
two triangles will agree on their common side, and the zero 
set will be continuous across the boundary. The situation 
in three dimensions is analogous, with the word “triangle” 
replaced by “tetrahedron”. 

We note that, in order for the interface representation to 
be continuous across cell boundaries, it is necessary both 
that the mesh be conformant and that each vertex have at 
most one signed distance value for each interface. 

The signed distance values for a vertex are computed when 
the vertex is created in a split operation. When searchiig for 
the point on the true interface that is closest to the vertex, 
it is possible to restrict attention those cells that share the 
edge being split. This makes the computation very efficient 
for the great majority of vertices. 

4 Representing Discontinuous Fields 

Once we have approximated the interfaces within a cell, we 
must decide how to represent fields on either side of the in- 
terface. Our algorithm represents the discontinuity by con- 
structing a linear field representation for each material in 
the cell. In order to specify these representations, each of 
the vertices in a cell must have a distinct field value for 

each material in the cell. When a vertex does not lie in a 
given material, the field value associated with that material 
is called a ghost value. 

The use of ghost values is illustrated in Figure 2. The 
material on the upper side of the interface is represented by 
brown and the material on the lower side is represented by 
green. The two upper vertices lie in the brown material and, 
thus, have regular values for the field in the brown material. 
These values are indicated by the the solid brown circles. 
The empty green circles indicate that these vertices require 
ghost values for the green material. Similarly, the lower cir- 
cles lie in the green material and, thus, have regular values 
for the field in the green material (solid green circles) and re- 
quire ghost values for the field in the brown material (empty 
brown circles). Once we have such ghost values, we can de- 
fine linear representations for the field in the two regions by 
the usual interpolation. If we maintain a conformant mesh 
and assign only a single ghost value for a given material to 
a vertex, then our field representation will be discontinuous 
where it should be (across the interface) but not across cell 
boundaries (which would be a spurious discontinuity). Once 
again, the situation in three dimensions is analogous, with 
the word “triangle” replaced by “tetrahedron”. 

In our current implementation, we choose as the ghost 
value for a given vertex, field, and material the value of 
the field at the point in the material that is closest to the 
cell. These points are, of course, exactly the points that 
were used to determine the distance map that defines the 
approximation to the interface. 

The ghost values for a vertex are computed when the ver- 
tex is created during the tetrahedral refinement process. 

5 Error Bounds and Refinement Strategy 

The error bounds employed in our framework are similar to 
the nested error bounds used in the ROAM system. Each 
cell has two associated kinds of error values, field errors and 
material interface errors. 

Field errors are first calculated for leaf cells and are then 
propagated up the hierarchy. So far, we have only worked 
with input data sets that may be considered to consist of 
discrete grid points. In this case, the computation of error 
bounds for leaf cells is straightforward-the error for a leaf 
cell is simply the maximum of the errors associated with 
all the grid points from the input data set that it contains. 
When fields in the input data set are considered to have 



values over finite volumes, the computation of leaf cell errors 
will be more complex. 

The field error eT for a non-leaf cell is computed from the 
errors associated with its two children according to: 

eT = m={erro, e q  1 + Iz(vc) - Z T ( V , ) ~  (1) 
where eTo and eTl are the errors of the children; vc is the 
vertex that splits the parent into its children; ~(v,) is the 
field value assigned to v,; and ZT(V,) is the field value that 
the parent assigns to the spatial location of v,, equivalently, 
ZT(V,) = $(z(vo) + z(v1)), where vo and v1 are the vertices 
of the parent’s split edge. This error bound is nested in the 
sense that the error of a child is guaranteed not to be greater 
than the error of the parent. 

The material interface error associated with a leaf node 
is the maximum of the errors associated with each of the 
interfaces in the node. For each interface, the error is the 
maximum distance between the approximate representation 
of the interface in the cell and those polygons that define the 
true interface and which are contained in the cell. 

We initially refine our mesh to meet a user-determined 
error bound on the location of interfaces. The mesh is then 
further refined, using the ROAM algorithms, to minimize 
the error in a given field consistent with a given tetrahedron 
count. 

6 Results 

We have tested our algorithm on a data set resulting from 
a simulation of a hypersonic impact between a dense pro- 
jectile and a less dense metal block. The simulation uses a 
logically rectilinear mesh of dimensions 32x32~52. For each 
cell, the density and pressure values are available, as well as 
the per-material densities and volume fractions. The physi- 
cal dimensions in 5, y, and z directions are [0,12] [0,12] and 
[-16,4.8]. 

There are three materials in the simulation: the projec- 
tile, the block, and empty space. The interface between the 
projectile and the block consists of 38 polygons, the interface 
between the projectile and empty space consists of 118 poly- 
gons and the interface between empty space and the block 
consists of 17574 polygons. 

Figures 3 shows a cross section view of the mesh created 
by a cutting plane. The black lines are the original interface 
polygons intersected by the plane, and the magenta lines are 
our approximation to the interface. The interface approxi- 
mation error is 0.15. An error of 0.15 means that all of the 
vertices in the original material interface meshes are no more 
that a physical distance of 0.15 from their associated inter- 
face approximation. This is equivalent to an error of (0.5 - 
1.5)% when considered against the physical dimensions. A 
total of 3174 tetrahedra were required to approximate the 
interface to an error of 0.15. The overall mesh contained a 
total of 5390 tetrahedra. A total of 11990 tetrahedra were 
required to approximate the interface to an error of 0.15 and 
the density field to an error of 3. The maximum field a p  
proximation error in the cells containing material interfaces 
was 2.84 and the average field error for these cells was 0.007. 
These error measurements indicate that separate field repre- 
sentations for the materials on either side of a discontinuity 
can accurately reconstruct the field. 

Figures 4 and 5 compare density fields generated using 
linear interpolation of the density values to fields generated 
using separate field representations on either side of the dis- 
continuity. Figure 5 shows that using explicit field repre- 
sentations in the presence of discontinuities can improve the 

quality of the field approximation. This can be seen in the 
flat horizontal and vertical sections of the block where the 
cells approximate a region that contains the block and empty 
space. In these cells, the use of explicit representations of 
the discontinuities leads to a very accurate representation 
of the density field. The corresponding field representations 
using linear interpolation, shown in Figure 4, do a very poor 
job of capturing the discontinuities. Furthermore, Figure 5 
captures more of the dynamics in the area where the pro- 
jectile is entering the block (upper left corner). The linear 
interpolation of the density values in the region where the 
projectile is impacting the block smooths out the density 
field, and does not capture the distinct interface between 
the block and the projectile. Figure 6 shows the density 
field from Figure 5 with our approximation to the interface 
and without the cell outlines. 

7 Conclusions and Future Work 

We have presented a simplification method for scientific data 
sets that explicitly represents material interfaces in mesh 
cells. Our algorithm constructs an approximation that can 
be used in place of the original data set for visualization 
purposes. Explicitly representing the material and implicit 
field discontinuities allows us to use multiple field represen- 
tations to better approximate the field within each cell. The 
use of the tetrahedral subdivision allows us to generalize our 
algorithm to a wide variety of data sets and to support in- 
teractive level-of-detail exploration and view-dependent sim- 
plification. Future work will extend our error calculations 
to support complex input cell types such as tetrahedra and 
curvilinear hexahedra. Our current ghost value computa- 
tion assumes that the field is constant on the other side of 
the interface. Higher-order extrapolation methods should 
be investigated for ghost value computation to determine if 
a superior field approximation can be obtained. Similarly, 
material interfaces are defined by approximations based on 
linear functions. The tradeoff between cell count and higher- 
order approximation methods should be investigated to de- 
termine if a better approximation can be obtained without 
a great increase in computational complexity. Finally, we 
plan to apply our algorithm to more complex unstructured 
data sets. 
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